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The boundary-integral, or panel, method of solution of the plane potential-flow 
equation for incompressible flow is well established. We extend the method to the 
fully compressible problem, in subcritical flow conditions. The method is applied to 
single- and to multi-element configurations. 

1. Introduction 
In a recent (Hill 1983) and a forthcoming (Hill & Porter 1986) publication a method 

for determining the fundamental solution of a general two-dimensional elliptic partial 
differential equation is addressed, in terms of which particular solutions may be 
represented. We exploit the technique in this paper to develop solutions of the full 
two-dimensional potential equation, in subcritical flow conditions, for the flow past 
a multi-element high-lift wing. Such a configuration may contain as many as four 
elements, and even a t  modest free-stream speeds compressibility effects may not be 
negligible; indeed the flow over the forward part of the slat may be supercritical. Our 
approach results in a boundary-integral or panel method for the solution of the full 
two-dimensional potential equation in steady flow past a multi-element configuration 
in subcritical flow conditions. 

Panel methods of solution of the incompressible potential equation are effective, 
flexible and well established; see Hess & Smith (1966), Hess (1973). In such a method 
the solution is represented by a distribution of sources and/or vortices over the 
bounding surfaces of the flow. Application of the boundary conditions leads to a 
Fredholm integral equation that has to be solved for the source/vortex strengths. 
The solution of this integral equation is effected by a suitable discretization of the 
boundary and choice of singularity distributions. Since, unlike finite-difference 
methods of solution of the governing equation, the method does not require the 
generation of a computation mesh, the calculation of the flow past a multi-element 
configuration presents no more difficulty than a single aerofoil. In this paper we show 
that a compressible analogue of the familiar panel method may be constructed. The 
method differs significantly from the so-called field-panel methods (see, for example, 
Oskam 1985). In  these methods terms in the potential equation that are associated 
with compressibility effects are treated as distributed source terms. This enables the 
use of incompressible-flow panel methods with the expression for the potential now 
containing an additional double field integral whose integrand involves the unknown 
potential. 

The plan of the present paper is as follows. In $2 we formulate the nonlinear 



232 M .  G. Hill, N .  Riley and K .  W .  Morton 

problem, and outline schematically the iterative method that is proposed for its 
solution. This is followed in $3 by a description of the panel method that we propose 
to adopt, as applied to  incompressible flow. In  $4 we address the full compressible 
problem. A key feature in its solution is the derivation of the fundamental solution 
of the linearized potential equation, which is a part of the iterative scheme, via a 
Volterra integral equation. The solution of this equation allows us to construct the 
analogue of the source/vorticity distribution, for incompressible flow, in the Fredholm 
integral equation. The convergence of our iterative method of solution is estab- 
lished in $5. Finally, in $6 we present results for subcritical flow past a variety of 
configurations involving one or more elements. A comparison with the results 
obtained by other authors establishes the effectiveness of the method. I ts  flexibility 
and power become apparent as the number of elements in the configuration increases. 
Apart from additional computer time, the method is independent of the number of 
elements in the configuration. 

2. Problem formulation 
We are concerned with the steady, two-dimensional flow of an  inviscid, compressible 

fluid past one or more shapes of aerodynamic interest. We make the assumptions that 
the fluid is a perfect gas, that  the flow is irrotational and, for the subcritical flows 
under consideration here, that  the flow is isentropic. 

If the uniform fluid speed and density at infinity, U ,  and p,, are taken as reference 
speed and density respectively, and a typical dimension 1 of a body in the flow field 
as a reference length, then with u = (u, w) = V@ the equation satisfied by the potential 
@ is, in a Cartesian co-ordinate system (x, y), 

Using the isentropic relation a2 = p y - ' ,  where a is the speed of sound made 
dimensionless with its value at infinity a,, and y is the ratio of the specific heats, the 
energy integral of the governing equations, or Bernoulli equation, may be written 
as 

where q2 = u2+v2 = IV@I2, and M I  = U J a ,  is the free-stream Mach number. 
The equations (2.1) and (2.2) are to  be solved subject to the boundary conditions 

@ - x  asIxI+co, V @ * n = O  onC, (2.3a, b )  

where we have assumed that the flow a t  infinity is parallel to  the x-axis, and taken 
n as the unit normal t o  an  internal boundary C of it. I n  addition to  (2.3) we apply 
a Kutta condition a t  the sharp trailing edge of each of the aerodynamic shapes that 
bound the flow internally. In  this way the circulation about each shape is determined 
and the solution rendered unique. 

Since (2.1) and (2.2) are nonlinear we have adopted an iterative solution method 
which is represented schematically as 

(2.4a, b )  

where a superscript i denotes the ith iterate. Thus, a t  each stage of the iteration 
the partial differential equation to  be solved, namely (2.4a), is a linear equation. If 
we write (2.1) as 

v ' (Pi V@+l ) = 0, pi = B(@i), 

a w  a w  a a@ a a@ 
-+7+-(10gp)-+-(logp)- = 0, 
ax2 ay ax ax ay a Y  
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then the problem to be solved, with p = p(z ,y )  assumed known, is the linear 
second-order partial differential equation with variable coefficients (2.5), subject to 
(2.3) and appropriate Kutta conditions. In  the next section we introduce the solution 
method for the special case p = 1, and in $4 show how the method may be extended 
to fully compressible flows. 

3. Incompressible flow 
When M ,  = 0 we have p = 1, and our basic equation (2.5) reduces to the familiar 

plane Laplace equation aw aw 
ax2 ay2 
-+- = 0, 

for incompressible flow. This equation is to be solved subject to (2.3) and appropriate 
Kutta conditions. 

For single aerofoils exact solutions of the problem posed by (3. l),  and its boundary 
conditions, are available from conformal-transformation methods in which the body 
is transformed to a circle. Williams (1973) has also used this method for two lifting 
aerofoils by transforming them to two circles between which there are multiple 
reflections of the doublet and vortex singularities contained within them. Suddhoo 
(1985) has shown how Williams' method can be extended to multi-element aerofoils 
and presents examples for configurations with three and four elements. 

In the present paper our method of solution is based upon the boundary-integral 
or panel method, in which the solution is represented by a distribution of singularities 
over the bounding surfaces. This method, which is capable of computational accuracy 
comparable with that of the methods described above, has found wide acceptance 
within the aerodynamics community. For a general account of these methods 
reference may be made to the work of Hess t Smith (1966) and Hess (1973). The 
method is flexible and, as demonstrated in $4 below, can be extended to multi-element 
configurations in compressible flow with little extra computational effort. 

To implement such a method of solution we first note that the fundamental solution 
of (3.1) and its conjugate harmonic function may be written as 

These correspond to the potentials of a line source and a line vortex respectively, and 
the solution of (3.1) may be constructed formally, as distributions of such singularities 
over the bounding surfaces, as 

@@I = @&)+J C 4 q )  1oglP-ql dP+ j  C Y(q)O@-q) dq, (3.3) 

where p = (x,y) is the point at which @ is evaluated, q = ( 6 , ~ )  is a point on the 
boundary C, with whichp does not coincide, Gm@) = x, and the source and vortex 
strengths r and y are to be determined. In  the method that we use, which originated 
with British Aerospace (see Newling 1977), we retain distributions of both sources 
and vortices ; the former essentially account for the aerofoil thickness whilst the latter 
deal with the lift. The source and vortex strengths are determined from the solution 
of an integral equation that is derived from (2.3b), and the normal derivative of (3.3), 
whenp is taken on the boundary C ,  which is 
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Yo = 0 

Yi+l gi 

FIGURE 1. Discretization of the bounding curve C .  

where a/an, denotes the derivative normal to the boundary C at the point p .  (The 
resolution of the apparent indeterminacy associated with this procedure is discussed 
below.) In order to solve (2 .3b) ,  (3.4) for the source and vortex strengths cr and y ,  
the boundary C ,  which may consist of one or more elements, is discretized so that 
it is represented by a sequence of boundary elements or ‘panels’. These panels may 
be straight-line, circular-arc or higher-order segments as discussed by Hess (1 973).  
In this paper we choose straight-line segments and, with reference to an aerodynamic 
shape, we represent each of the upper and lower surfaces by N such panels, making 
2N panels in all. The panels may vary in length, and may be constructed in a variety 
of ways. However, since we wish to identify corresponding panels on the upper and 
lower surfaces, we divide the straight line joining the nose and the trailing edge into 
N ,  not necessarily equal, segments and take as our panels the linear projections of 
these on to C as in figure 1. The form of the distributions for cr and y must also be 
specified. The source strength is taken as piecewise constant so that cr = cr on the 
ith panel, and the vorticity distribution is taken to be a continuous, piecewise-linear 
function. Thus, over the ith panel y = yiP1 + (yi - yi-l) s, where 0 < s < 1 along the 
panel and yiP1, yi represent the vortex strengths at each end of it. Finally, if a sharp 
trailing edge corresponds to i = 0 we set yo = 0 to satisfy the Kutta condition. The 
boundary condition (2 .3b)  is now satisfied, using the discretized form of (3 .4)  obtained 
by evaluating the integrals numerically over all the panels into which C has been 
divided, at the 2N nodal points that are defined to be the panel mid-points. This 
provides us with 2N equations that are linear in the 4N unknown quantities crf and 
yr. In order to make the system determinate the source and vortex densities on oppo- 
site panels on the upper and lower surfaces are prescribed to be equal. The 2N 
unknown quantities may then be determined by standard methods from the 2N 
equations. 

The method described above has proved to be a powerful method in practice, and 
has been incorporated by Butter & Williams (1980) into a method for calculating the 
viscous flow about high-lift aerofoils. 

4. Compressible flow 
In this section we show how the method described in § 3  may be extended to 

subcritical compressible flow, where its value becomes apparent in applications to 
the flow past multi-element configurations. 
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The exact methods outlined above, based upon conformal transformations, that  
have been used for incompressible-flow problems are no longer available. Sells (1968), 
Garabedian & Korn (1971) and Suddhoo (1985) all present finite-difference solutions 
of (2.1) for compressible flow past a single lifting aerofoil. Suddhoo follows Sells by 
mapping the flow field to the inside of a circle which is then the computational domain. 
Heextends this method for a two-element configuration by mapping the computational 
domain onto the annulus between two circles, which themselves represent the 
boundaries of the two aerofoils, and his calculations are not limited to  subcritical flow. 
The mapping technique overcomes the difficulty of devising a suitable computational 
mesh, since in a circular domain polar coordinates may be conveniently used. 
Although Suddhoo has demonstrated that his method may be extended t o  the sym- 
metric flow past three in-line cylinders i t  is not a t  present clear that  more than two 
lifting elements can be introduced. The difficulties of grid generation for multi- 
element configurations are overcome by D. A. King (1984, private communication, 
British Aerospace, Hatfield) who uses a finite-element method that is also capable of 
handling flows in the supercritical regime. We note that by its very nature a panel 
method is not restrictive in the sense that, apart from the obvious additional compu- 
tational effort, i t  may be used to  calculate the flow past a multi-element configuration 
in the same manner as for a single element. 

Since the compressible-flow problem is nonlinear, an iterative method of solution 
has to be adopted, and this is outlined schematically in (2.4). However, before this 
can be implemented i t  is necessary to find the fundamental solution of (2.5), with 
p = p(z ,  y) assumed known. Such a solution is the analogue of (3.2), and a distribution 
of such singular solutions over the boundary C ,  which may consist of one or more 
elements, is used to represent the solution of our boundary-value problem. 

For subcritical flow (2.5) remains elliptic. Vekua (1967) and Bergman (1969) have 
addressed themselves to the problem of determining the fundamental solution of 
second-order, linear, elliptic partial differential equations. Their methods lead to an 
integral representation of the solution, whereas, as we see below, our approach leads 
to an  integral equation for the solution. I n  the forthcoming paper Hill & Porter (1986) 
make a detailed examination of the relationship between the three methods. 

Guided by the work of Vekua and Bergman, we first analytically continue t h e  
variables 2, y into the complex plane, and introduce new independent complex 
variables z, w as 

z = s + i y ,  w = z-iiy. (4.1) 

If we then denote the analytic continuation of any variable by a caret we have 

(4.2) &(z, w) = @(+(z+w), -+i(z-w)), 

as the analytic continuation of Q, and then, using (4.1), the analytic continuation of 
(2.5) may be written as 

a2b a ~ a &  a a 6  
azaw aZ aZ aw -+-(1ogp)-+-(log/?)- aw = 0. (4.3) 

Finally, if we write &(z, W )  = p-:F(z, w ) ,  (4.4) 

then, with (4.5) 

hF = 0, (4.6) aZ aw 
a2F 

the equation for F is -- 
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and i t  is the fundamental solution of (4.6) that  we now seek. 
From (4.6) we have 

F(z,  w) = a(z)  +p(w) + h(t,  7 )  F(t ,  7) d7 dt, (4.7) s’ JW 
where a,  #I are arbitrary functions. Noting the form of the fundamental solution (3.2) 
for incompressible flow, we choose a ( z )  = log(z-S),/3(w) = 0, where 6 is a complex 
constant and, if the complex conjugate is denoted by an  overbar, (4.7) is written as 

F(z,w;S,8) = log(z-6)+ J8’ law h(t,  7 )  F(t ,  7 ;  6,8) d7 dt, 

which is a Volterra integral equation for F. Writing w = Z, we then have 

F(z,  Z;6,8) = logR+i8+ h ( t , ~ )  F ( ~ , T ;  6,8) d7dt. 
l8‘ 6 (4.9) 

If  p = 1, corresponding to incompressible flow, then h = 0 and F(z ,  Z; 6,8) in (4.9) is 
immediately identified with (3.2). The double integral in (4.9) may therefore be 
interpreted as a correction, due to  compressibility effects, to the fundamental solution 
for incompressible flow (3.2). The solution of the Volterra equation (4.8) is described 
in detail by Hill & Porter (1986) ; here we give a brief outline of the method. 

Because of the logarithmic singularity that appears explicitly in (4.8) we find it 
convenient to  write 

F(z,  W ;  6,s) = log (2-6) + G(z ,  W ;  6, 8)’ (4.10) 

and to  solve the equation for G, namely 

G(z ,  w; 6’8) = j: jaw h(t, 7 )  log ( t -6 )  d7 dt+ law h(t,  7 )  G(t ,  7 ;  6, 8) d7 dt. (4.11) 

For the method of solution we refer to the schematic diagram, figure 2, in which a 
‘rectangle’ is shown in the (z,w)-plane whose diagonal PQ represents the real line 
z = W. I n  terms of the solution of the physical problem under consideration the point 
(6,s) represents the pointp on one of the elements in the flow field a t  which we apply 
the boundary condition (2.3b), whilst the point ( z , @  represents a point q on the 
boundary as, for example, in (3.3) or (3.4). The real line z = W then represents a path 
that connects p and q.  It is convenient, although not necessary, to  let the path 
coincide with one of the boundaries of the flow. However, whenp and q lie on different 
elements of a multi-element configuration this is not possible, and part of the path 
must then lie in the flow field itself. With reference to (4.11) we have in figure 2 G = 0 
along PA and PB and we determine G a t  Q from a numerical evaluation of (4.11) 
as follows. Suppose that the rectangle is divided into a rectangular grid. Further 
suppose that the solution has been determined a t  all grid points within, and along, 
the boundary of the rectangle PA’Q’B’ except at the point Q’ itself. Then, a numerical 
representation of (4.11) over this rectangle provides an  explicit estimate for G at Q‘. 
The solution may be continued in this manner up to the point Q for all points q on 
the boundary. Note from (4.5) that  the analytic continuation of the density p is 
required when solving (4.11). This is obtained as follows. With the density updated 
from (2.4b) i t  is continued analytically by first forming a series of subcovers in the 
neighbourhood of all points along the line PQ, and then in a similar manner extending 
this to  the whole of the rectangular domain PAQB. It may be noted that the error 
incurred in series truncation is comparable with that associated with the implemen- 
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FIQURE 2. Domain of integration for the function G in (4.12). 

tation of the panel method. This procedure leads to a unique analytic continuation, 
and for further details of it reference may be made to Hill (1983). Finally, we 
determine F from (4.10) and write 

F = pi( Y + i 8 )  (4.12) 

so that Y and 8 are now the analogues, for compressible flow, of (3 .2) .  The solution 
of the boundary-value problem, as for incompressible flow, is completed by noting 
that the analogue of (3.4) is 

The determination of u, y follows, exactly as in the case of incompressible flow, from 
(2.3b) and (4.13). 

In the iterative method (2.4) we first set p = 1 so that Y, 8 are as in (3 .2) .  We 
then solve the Fredholm integral equation, derived from (2.3b) and (4.13), for the 
source and vortex strengths u and y. From (4.13) and its analogue for a@P/as where 
(s, n )  are orthogonal, we may obtain from (2.4b) anew estimate for the densityp which 
is then analytically continued into the complex (2 ,  w)-plane in the manner described 
above. With h determined as in (4.5) we solve the Volterra integral equation (4.11) 
for G and so, from (4.10) and (4.12), obtain new estimates for Y and 8. This process 
is then continued until convergence is achieved according to some pre-set criterion. 
The convergence properties of the iterative scheme are discussed in the next section. 

5. Convergence 
In discussing the convergence properties of the numerical procedure outlined in $4,  

we begin by considering the linearization (2 .4)  and establish the following: 

THEOREM. Let Ot+l be the solution of ( 2 . 4 ~ )  with pz = B ( @ )  given by (2.4b). Then 
if for some i the maximum local Mach number Mz < 1, (2 .4a)  is elliptic, and hence for 
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a given circulation has a unique solution subject to (2.3). Moreover, if this solution is  
such that Mi+' < 1, < 1 for all x, y, then 

Il@i+1-@11 < L2 \ \@-@[ I ,  (5-1) 

where llu112 = japIVu12 dQ, and Q is the region exterior to C .  

This theorem provides the basis for the iterative procedure. 
Proof. From the definition of the norm we have, using ( 2 . 4 a ) ,  (2.1) and Green's &st 

identity, r 

Use of Bernoulli's equation (2.2) for p and pi gives after some manipulation, as in 
Hill (1983), 

(5.3) 

Then (5.2) becomes, using the Cauchy-Schwarz inequality together with (5.3), 

Further use of Bernoulli's equation gives 

( p i ) l - y  I V @ + I  2 < i+l I-y v@i+l 2 if I v@i I < I V @ i + l ) ,  I \ @  1 I I 
< ( p i ) 1 - y l  VQi l 2  if I V@ I 3 I V@+' 1, (5.5) 

so that substitution in (5.4), with the identity M I  I V G i  I = (pi)i(Y-l)  M i ,  shows that, 
if Mi < L < 1, then 

lI@+l-@[l < I? \ l@-@Il, (5.6) 

and the theorem is established. 

by Hill (1983), and Hill & Porter (1986). Here we simply state the result: 
The numerical solution of the Volterra equation (4.1 1) has been discussed in detail 

I G ( 2 , Z ;  8, cT)-Q(z, 2 ;  6,8) I = O(lC?), (5.7) 

where is the numerical approximation to the solution G of (4.1 1) and k, is a typical 
grid size in the mesh on the rectangle of figure 2. I n  practice this is taken to be 
comparable with the panel length in the solution of the Fredholm integral equation 
(4.13). 

As far as the numerical solution of (4.13) itself is concerned, we note the result (see 
Wendland 1985) that, if u ( s )  is a solution of 

u(s) = f(s) + jc K(s .  t )  u(t) dt, 

and K is weakly singular, then 

In (5.9) the L, norm is intended, and u ,  is the approximation to  u obtained from 
a numerical evaluation of (5.8) in which k, is the maximum panel length. 

The results of this section show that, for subsonic flow, the iterative numerical 
procedure outlined in earlier sections will converge to a solution with an error that  
is of the order of the square of the maximum panel length in the discretization of 
C. The number of iterations that are required in practice depends upon the particular 
flow under consideration. However, in most cases we have found it to be about 10. 
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FIGURE 3. Pressure distribution over the upper surface of a circular 
cylinder for M ,  = M ,  = 0.4 (-); M ,  = 0 (---). 

6. Calculated results 
We have used the method outlined in 54 to  calculate the subcritical flow past 

representative single- and multi-element configurations with varying degrees of 
complexity. For symmetric shapes, with which we are initially concerned, it should 
be noted that y(q)  = 0 in (4.13). 

We consider first the simplest case of all, namely that of flow past a single circular 
cylinder. The classical Rayleigh-Janzen expansion (see for example Van Dyke 1975) 
predicts a critical Mach number M ,  at which flow becomes sonic, as 0.398. Williams 
(1979), using a finite-element method, gives M ,  = 0.400, a value with which we agree 
when using 160 panels in all. I n  figure 3 we show the pressure coefficient 
C ,  = ( p - p , ) / i p ,  over the upper half of the cylinder for MI = M,. Also included 
for comparison is the pressure distribution for incompressible flow. 

Our second example is the symmetric flow past two in-line circular cylinders. These 
are placed with their centres at a distance of three radii apart. For incompressible 
flow an exact solution is available which may be obtained by the method of Williams 
(1973). For compressible flow Suddhoo (1985) maps the two circles to the boundaries 
of an  annulus of circular cross-section and calculates the flow in this transformed plane 
by finite-difference methods on a polar grid. Our panel method of solution, now using 
80 panels on each element, is implemented exactly as for a circular cylinder with the 
exception that the path of integration in the solution of the Volterra equation (4.1 1 )  
may now span the fluid region between the two cylinders. I n  such cases we have 
always chosen the shortest path between the two elements of the configuration that 
are involved. The pressure distribution over the upper surfaces of the two cylinders 
is shown in figure 4 for the case M ,  = M ,  = 0.43. We again include the incompressible 
result for comparison. I n  those cases where we have been able to  make a comparison 
with the finite-difference calculations of Suddhoo (1985) we record agreement in which 
the solutions are graphically indistinguishable. 

One of the earliest compressible-flow calculation methods for a single aerofoil is that 
due to  Sells (1968) who maps the flow field to the interior of a circle whose boundary 
is the aerofoil surface. One of the examples given by Sells is the non-lifting symmetric 
flow past the RAE 101 aerofoil section with M ,  = 0.7457 for which he finds the 
maximum local Mach number to  be 0.991. For this valuc of M,, and using 160 panels, 
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FIGURE 4. Pressure distribution over the upper surfaces of two in-line circular 
cylinders for M ,  = M ,  = 0.43 (-); M ,  = 0 (----). 

FIQURE 5. Pressure distribution for symmetric flow over the upper surface of the RAE 101 aerofoil 
section for M ,  = 0.7457 (-); M ,  = 0 (----). Also shown is the Prandtl-Glauert result for 
MI = 0.7457 (-.-*-*- ). 

we find this local maximum to be 0.9905. Figure 5 shows the pressure distribution over 
the aerofoil surface, for Ml = 0.7457, and we note that the results of Sells are identical 
on this scale. In figure 5 the incompressible-flow solution is again included for 
comparison and also, for this case only, we show the pressure distribution predicted 
by the Prandtl-Glauert approximation. This is believed to give a good approximation 
if the local Mach number does not exceed 0.6. In the case under consideration, in which 
the flow is almost critical, the Prandtl-Glauert approximation is seen to be quite 
inadequate. 

Another popular test case is the NACA 0012 aerofoil section. The pressure 
distribution over the upper and lower surfaces, using 160 panels in each case, for two 
different incidences is shown in figure 6. For each case the free-stream Mach number 
Ml is chosen such that the flow conditions are almost critical. The higher-incidence 
case, shown in figure 6(a) ,  is a particularly severe test because of the very high loading 
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FIGURE 6. ( a )  Pressure distribution over the NACA 0012 aerofoil section; upper surface (-), lower 
surface (----). M ,  = 0.3, incidence a = 10". The inset compares the suction peak using 80 panels 
(----) and 160 panels (-) with a solution using the method of Garabedian & Korn (0). ( b )  As 
(a )  with M ,  = 0.63, a = 2". 

FIGURE 7. The National High-Lift aerofoil section. The slat heel, 
shown as ----, is enveloped by a vortex sheet. 

on the upper surface a t  the leading edge of the aerofoil. We have made a comparison 
of our results for each of these cases with solutions by the method of Garabedian & 
Korn (1971), kindly supplied by Dr R. C. Lock, in which there are also 160 grid points 
on the aerofoil surface. For the case shown in figure 6(b) the results are graphically 
indistinguishable. This is true also of figure 6(a) except in the neighbourhood of the 
suction peak. It is in the neighbourhood of sharp, high suction peaks that we might 
expect differences between different solution methods, and we highlight the difference 
in this case on the inset to figure 6(a).  We see that panel refinement leads to closer 
agreement with the finite-difference solution, and we record a difference of just over 
2 % in thelift coefficient. D. A. King (1985, private communication, British Aerospace, 
Hatfield) has developed a finite-element technique for compressible flow past 
multi-element aerofoils and when applied to the NACA 0012 the results are graphically 
indistinguishable from those presented in figure 6. 

The first multi-element amofoil configuration for which we present results is that 
associated with the National High-Lift Programme, and is shown in figure 7. It was 
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FIGURE 8. Pressure distribution over the slat and main aerofoil for the National High-Lift wing. 
For each element - denotes upper-surface distribution ; ---- , lower-surface. M I  = 0, a = 15". 

originally in three-element form, but the flap has been omitted although the cove a t  
the rear of the main aerofoil is retained. Also, in this case flow separation across the 
slat heel has been modelled by a vortex sheet. The solutions that we present in figures 8 
and 9, for M ,  = 0 and 0.2 respectively, have been obtained using 60 panels on each 
element of the configuration. In  figure 9, for which M ,  = 0.2, the maximum local Mach 
number in the flow field is 0.73. At this free-stream Mach number significant 
compressibility effects are apparent only over the leading edges of the upper surfaces 
of the elements. (Note that for this value of M , ,  C, = - 16.314 when the flow becomes 
critical.) A comparison between the present results, and those obtained from the 
finite-element method under development at British Aerospace by King gives 
agreement to within graphical accuracy except at the suction peaks, for which we 
make a more detailed comparison in table 1. On the main aerofoil an  unexplained 
trend is the magnitude of the suction peak, which decreases with Mach number in 
the finite-element. method but increases in the present method. 

Finally, we consider the three-element configuration shown in figure 10. This 
configuration has been devised by Suddhoo (1 985) from a conformal transformation 
of three circles, and an exact solution is given by him for incompressible flow. Our 
results, shown in figures 11 and 12 for M ,  = 0 and 0.15 respectively, have been 
obtained using 60 panels on each element of the configuration. For the higher 



Integral method for subcritical compressible flow 243 

. /  /--p ' / X / X ,  

" [ \  0.2 0.4 /0.6 0.8 1 .o 

x / x ,  

1 .o 
0.2 5 -0 .6-  

0 

/ 
I Wing * 

- 1  

FIGURE 9. As figure 8; M I  = 0.2, a = 15". 

Slat Main wing 

MI K P K P 

0.0 3.05 2.95 5.6 4.5 
0.1 3.07 3.03 5.5 4.6 
0.2 3.14 3.15 5.4 4.8 

TABLE 1. A comparison between the suction peaks on the slat and the main aerofoil, for the 
configuration shown in figure 7, using the finite-element (K) and present (P) methods 

free-stream Mach number the maximum local Mach number that is achieved is 0.53 
and as a consequence there are no significant effects due to  compressibility. (We may 
note that, for this value of MI, C, = -29.419 when the flow becomes critical.) Again 
we report excellent agreement with the finite-element results of King except in the 
neighbourhood of the suction peaks, which are compared in table 2. In  that table 
we are also able to include the exact result of Suddhoo for incompressible flow. We 
again note the opposing trend, as the Mach number increases, in maximum suction 
on the two rear elements. 
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FIGURE 10. The Suddhoo (1985) three-element aerofoil 

- 1  
L 

' R  
Slat 

1 
0 .  .\ 

> ' L O !  - 0 . 4  -0.6- -0.8- -1.0 

FIGURE 11.  Pressure distribution over three elements of the Suddhoo configuration. For each 
element - denotes upper-surface distribution; ---- , lower-surface. M ,  = 0, u = 20'. 
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FIQURE 12. As figure 11; M ,  = 0.15, a = 20". 
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Slat Main wing Flap 

M K P S K P 5 K P 5 

0.0 17.5 17.1 17.4 11.9 11.02 11.5 3.3 3.4 3.7 
0.1 17.8 17.5 11.6 11.3 - 3.2 3.5 
0.15 18.4 18.1 - 11.2 11.8 - 3.2 3.6 

- - 
- 

TABLE 2. A comparison between the suction peaks on the slat, the main aerofoil and the flap, for 
the configuration shown in figure 10, using the finite-element (K) and present (P) methods. The 
exact result of Suddhoo for incompressible flow is also shown (S). 
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7. Conclusions 
In this paper we have presented a panel method for the solution of subcritical plane 

potential flow past one or more finite bodies. The method is an extension of panel 
methods that are familiar for incompressible flow. Although compressibility effects 
lead inevitably to an additional computational effort, the method possesses all the 
flexibility of those used for incompressible flow. In particular, no restrictions are 
placed upon the method, in principle, when multi-element aerofoil configurations, 
with two or more elements, are encountered. The effectiveness of the method has been 
demonstrated in several test cases having varying degrees of complexity. 
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